
J. Fluid Mech. (2002), vol. 472, pp. 153–166. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002002288 Printed in the United Kingdom

153

Fission of collapsing cavitation bubbles
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High-speed observations clearly show that though a collapsing cavitation bubble
approaches its minimum size as a coherent single volume, it usually reappears in
the first rebounding frame as a cloud of much smaller bubbles or as a highly
distorted single volume. This paper explores two mechanisms that may be responsible
for that bubble fission process, one invoking a Rayleigh–Taylor stability analysis
and the other using the so-called microjet mechanism. Both approaches are shown
to lead to qualitatively similar values for the number of fission fragments and
the paper investigates the flow parameters that effect that number. Finally, the
additional damping of the Rayleigh–Plesset single-bubble calculation caused by the
fission process is investigated; it is shown that the fission damping dominates other
contributions normally considered and is consistent with the number of collapses and
rebounds that are observed to occur in experiments.

1. Introduction
Rayleigh–Plesset calculations for cavitation bubbles are now commonly embedded

in efforts to simulate cavitating flows computationally . The implicit assumption is that
the bubble remains sufficiently spherical for this equation to represent its dynamic
volumetric behaviour adequately. When the latter is compared with experimental
observations (see, for example, Kuhn de Chizelle, Ceccio & Brennen 1995), there are
many respects in which this approximation proves acceptable, particularly during
the growth of the bubble to its maximum size and the initial part of the collapse
phase. However, most high-speed observations of the collapse show that the bubble
fissions during passage through its minimum volume (figure 1) and, thereafter, the
Rayleigh–Plesset analysis fails to predict the dynamic behaviour accurately. In part,
this is because the Rayleigh–Plesset equation fails to represent the energy dissipation
associated with the fission process. As a consequence, the number and strength of
the rebounds observed in the experiments are much smaller than predicted by the
calculations.

This paper attempts to model the fission process in order to generate modifications
to the Rayleigh–Plesset equation which would handle the fission process, albeit
approximately. Two mechanisms that may be responsible for that bubble fission
process are explored, one invoking a Rayleigh–Taylor stability analysis and the other
centred on the so-called microjet mechanism of collapse. Both approaches are shown
to lead to qualitatively similar values for the number of fission fragments. Then, the
energy dissipation or absorption due to those fission processes is explored and this
leads, in turn, to an exploration of the effective damping that might be included in the
Rayleigh–Plesset model in order to model the energy attenuation which the fission
process implies.



154 C. E. Brennen

1 mm

(a) (b)

Figure 1. Photographs of an ether vapour bubble in glycerol (a) before and (b) after the first
collapse (reproduced with permission from Frost & Sturtevant 1986).

The paper is focused on the bubble dynamics that are typical of most (though not
necessarily all) practical bubbly cavitating flows. In such flows, gas-filled nuclei in
the size range 5–30µm grow explosively when they are convected into a low-pressure
region (below vapour pressure) and then collapse as they are convected out into
regions of higher pressure. We exclude the rather special bubble dynamics manifest in
sonoluminesence experiments (see, for example, Hilgenfeldt et al. 1998) that involve
smaller nuclei (and much greater time rates of change). In those special circumstances,
bubbles remain spherical down to much smaller size and thus produce gas compression
effects that require the inclusion of liquid compressibility and other effects which are
omitted from the present analysis. Liquid compressibility effects become important in
bubble collapse when the Mach number of the interface velocity approaches about
0.3. As shown by the example in § 5, bubble fission in most cavitating flows begins
long before such Mach numbers occur. Consequently, the present analysis omits liquid
compressibility effects. Another measure of assurance that the incompressible liquid
form of the Rayleigh–Plesset equation is appropriate to the present calculations is
provided by the comparisons of the calculated and measured noise emissions from
travelling cavitation bubbles presented by Kuhn de Chizelle et al. (1995). There it is
shown that though the measured noise emission for larger bubbles is substantially
less than predicted by the incompressible Rayleigh–Plesset equation, this discrepancy
is caused by bubble distortion and the results agree for smaller bubbles for which the
distortion is much less.

2. Collapse relations
Before analysing possible fission processes, it is necessary to detail an approximate

analytical model that includes the essential features of the growth and collapse of
a cavitating bubble as it passes through a low-pressure region in the flow. For this
purpose, the classical Rayleigh–Plesset model is used. For simplicity, it is assumed that
the liquid temperature is low enough for thermal effects to be neglected, that the mass
of non-condensable gas in the bubble remains constant and that the behaviour of
that gas can be represented by a polytropic constant, k. With the above assumptions,
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the Rayleigh–Plesset equation (see, for example, Brennen 1995) connecting the time-
dependent bubble radius, R(t), to the pressure in the liquid, p∞(t), becomes

pV − p∞(t)

ρ
+
pGo

ρ

{
Ro

R

}3k

= RR̈ + 3
2
(Ṙ)2 +

4µeṘ

ρR
+

2S

ρR
, (2.1)

where pV is the vapour pressure at the prevailing temperature, pGo is the partial
pressure of non-condensable gas in the initial cavitation nucleus, ρ and S are the
liquid density and the surface tension, the overdot denotes d/dt and, for the moment,
µe can be thought of as the liquid viscosity.

For the purposes of the present investigation, consider the evolution of a single
cavitation nucleus of radius Ro initially at equilibrium at the initial liquid pressure
pi∞. The initial partial pressure of gas is given by

pGo = pi∞ − pV +
2S

Ro
. (2.2)

This nucleus is then subjected to an episode in which the liquid pressure is decreased
below the vapour pressure, pV , causing explosive cavitation growth of the bubble
to a radius much larger than Ro. The ambient pressure eventually increases again,
causing the bubble to collapse violently. Such a scenario is typical of travelling bubble
cavitation whether in a pump, turbine, ship’s propeller, artificial heart valve or many
other situations in which cavitation occurs.

Clearly, the nonlinearities in the Rayleigh–Plesset equation severely limit progress
toward exact solutions. Here, because of the approximations made later in the devel-
opment of the theory, it would not be consistent to pursue numerical solutions (even
though they are now commonplace). Rather, an approximate analytical approach is
developed that is sufficient for present purposes.

The analysis will focus on that very brief instant at the heart of the collapse when
the bubble radius becomes very much smaller than Ro. Assuming that, during that
brief period, the liquid pressure is roughly constant at some value, pc∞, and, neglecting
the viscous term, the Rayleigh–Plesset equation can be integrated once to obtain

(Ṙ)2 =
K

R3
− 2(pc∞ − pV )

3ρ
− 2pGo

3ρ(k − 1)

R3k
o

R3k
− 2S

ρR
, (2.3)

where K is an integration constant. This constant can be approximately evaluated by
relating it to the maximum size of the bubble, Rmax, at which Ṙ = 0. The reason this is
only approximate is that the maximum size may well be achieved when the pressure
is significantly different from pc∞; but accepting this approximation and assuming that
Rmax � Ro and that k > 1,

K ≈ 2(pc∞ − pV )R3
max/3ρ. (2.4)

Of course, Rmax, will not be known a priori. For future purposes, it is therefore useful
to define a typical duration for the reduced pressure interval (for the growth process),
tR , and a typical tension, pV − pm∞, under which growth occurs. Since the growth rate
during this phase is dominated by the equivalent of the second term on the right-hand
side of (2.3), it follows that the maximum bubble size can be estimated to be

Rmax =

{
2(pV − pm∞)t2R

3ρ

}1/2

. (2.5)
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Now examine the behaviour manifest by (2.3) during the heart of the collapse when
R � Ro. Then, the two important terms on the right-hand side imply that

(Ṙ)2 → K

R3
− 2pGo

3ρ(k − 1)

R3k
o

R3k
, (2.6)

and that

RR̈ → k

(k − 1)

pGo

ρ

R3k
o

R3k
− 3K

2R3
. (2.7)

From (2.6), it follows that the minimum size reached by the bubble is

Rmin

Ro
=

{
2R3

opGo

3ρ(k − 1)K

}1/3(k−1)

=

{
pGo

(k − 1)(pc∞ − pV )

}1/3(k−1){
Ro

Rmax

}1/(k−1)

. (2.8)

Note that, when pGo is small, Rmin can be very small indeed and that the maximum
and minimum bubble sizes are inversely related.

Another moment in the collapse process which is important to the present analysis
is the moment at which the acceleration, R̈, changes from negative to positive. This
will be referred to as the beginning of the rebound. From (2.7), it follows that this
occurs when the radius takes the value, R∗, where

R∗ = (k)1/3(k−1)Rmin, (2.9)

which for any reasonable value of k is close to 4
3
Rmin. Moreover, the velocity at this

moment is given by

Ṙ∗ =

{
(k − 1)

k

K

R3∗

}1/2

. (2.10)

For reasons discussed below, our focus will be on the very brief interval of time
following R = R∗ and up to and somewhat beyond R = Rmin. Since R∗/Rmin is close to
unity, (2.6) can be integrated approximately to obtain R as a function of time during
this interval:

R

Rmin
= 1 +

{
3(k − 1)K

4R5
min

}
t2 + · · · , (2.11)

where the time origin, t = 0, is chosen to be at R = Rmin. It also follows from (2.7)
that the critical time interval, −t∗ < t < +t∗, in which R < R∗ is defined by

t2∗ ≈ 4R5
min

9(k2 − 1)K
. (2.12)

This completes the exploration of the ‘global motion’, R(t), which will be necessary
for the evaluations of the following sections.

However, before considering fission processes, it is convenient to parameterize the
above results in the following way. First, a Thoma cavitation number, σ, is defined;
this describes how close the inlet pressure is to the vapour pressure. Also, a non-
dimensional pressure distribution characteristic, α, is defined as follows:

σ =
(pi∞ − pV )

(pi∞ − pm∞)
, α =

(pc∞ − pm∞)

(pi∞ − pm∞)
. (2.13)

The parameter α will be a characteristic of the geometry of the flow regardless of the
vapour pressure and will often take a value of the order of unity. Then, the surface
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Figure 2. Typical comparisons between ——, the exact values and – – –, the approximate expressions
for Rmax/Ro, Rmin/Ro, and t∗/tR for k = 1.4, α = 1, σ = 0.5 and sufficiently small values of the
surface tension and viscosity.

tension, S , and the residence time, tR , are conveniently represented by the parameters:

R∗o =
Ro(p

i∞ − pm∞)

S
, CP =

tR

Ro

{
2(pi∞ − pm∞)

3ρ

}1/2

. (2.14)

Note that in (2.13) and (2.14), the pressure difference (pi∞ − pm∞) has been uniformly
used as one of the non-dimensionalizing factors.

In addition, a combination parameter that will appear in several places in the
results ahead, is defined:

CQ = CP (k − 1)1/3(α− 1 + σ)1/3(1− σ)1/2. (2.15)

Note for future purposes that

Rmax

Ro
= CP (1− σ)1/2,

Rmin

Ro
= (σ + 2/R∗o)

1/3(k−1)C
−1/(k−1)
Q ,

K =
2R3

oC
3
Q(pi∞ − pm∞)

3ρ(k − 1)
. (2.16a–c)

To provide some illustration of the accuracy of these approximations, numerical
integrations of the Rayleigh–Plesset equation, (2.1), were carried out in order to
compare the exact values of Rmax/Ro, Rmin/Ro and t∗/tR with the values given by the
above approximations. For this purpose, a Heaviside function pressure/time history
was used in which the pressure was suddenly decreased from pi∞ to pm∞ and then
increased abruptly again to pi∞ after a time tR (thus the parameter α = 1). Such
calculations were performed for a typical k = 1.4, for various cavitation numbers, σ,
and for various values of the parameter CQ which effectively sets the dimensionless
duration of the low-pressure episode. Provided the surface tension and viscosity are
small enough (as is typically the case) they do not affect the results in a major way.
Then, the comparisons shown in figure 2 are typical and the approximations are
sufficiently accurate for the purposes of this paper.
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3. Stability to spherical harmonic distortion
The stability of cavitating bubbles to non-spherical disturbances has been inves-

tigated analytically by Birkhoff (1954), Plesset & Mitchell (1956), Brennen (1995)
among others. These analyses examined the spherical equivalent of the Rayleigh–
Taylor instability. If the inertia of the gas in the bubble is assumed to be negligible,
then the amplitude, a(t), of a spherical harmonic distortion of order n (n > 1) is
governed by the equation:

d2a

dt2
+

3

R

dR

dt

da

dt
−
{

(n− 1)

R

d2R

dt2
− (n− 1)(n+ 1)(n+ 2)

S

ρR3

}
a = 0. (3.1)

Note that the coefficients require knowledge of the global dynamic behaviour, R(t).
The fact that they are not constant in time causes departure from the equivalent
Rayleigh–Taylor instability for a plane boundary. However, the coefficient of a within
the brackets, {}, of (3.1) is not greatly dissimilar from the case of the plane boundary in
the sense that instability is promoted when R̈ > 0 and surface tension has a stabilizing
effect. Plesset & Mitchell (1956) examined the particular case of a vapour/gas bubble
initially in equilibrium that is subjected to a step function change in the pressure
at infinity. Later calculations by Brennen (1995), incorporated the effect of the non-
condensable gas in the bubble. The effect of the gas is essential for present purposes
since its compression causes the rebound and therefore the instability that is addressed
here.

It is clear from (3.1) that the most unstable circumstances occur when Ṙ < 0 and
R̈ > 0. These conditions are met following the beginning of the rebound (as defined
earlier) and result in very rapid growth in non-spherical distortion. I submit that this
leads to the very rapid disintegration of the bubble and its metamorphosis into the
cloud of smaller bubbles that is seen in experiments to emerge from the collapse of
the bubble. The growth rate of the distortions is controlled by the magnitude of the
term in the brackets, {}, in (3.1). The larger the value of this term, the greater the
growth rate. Note that n occurs only in this term and that the functional dependence
on n has the form

(n− 1){Γ − (n+ 1)(n+ 2)} where Γ = ρR2R̈/S. (3.2)

It follows that as long as Γ is positive, there will be a particular value of n (denoted by
nm) for which the term has a positive maximum. This mode of distortion is expected
to dominate and therefore to play a role in determining the number of fission bubbles.
(It is noted that Shepherd (1980) follows a qualitatively similar argument in an effort
to predict the wavelengths of surface distortion seen on the bubbles in the experiments
from which figures 1 and 4 are taken.)

One complicating factor is that Γ will vary with time within the unstable interval
increasing from zero at t = −t∗ to a maximum Γm when R = Rmin and decreasing
again to zero at t = t∗. Clearly, however, Γm is a representative value and, using the
results of § 2, can be written in terms of the parameters defined in that section:

Γm =
R∗oC

(3k−1)/(k−1)
Q

(σ + 2/R∗o)2/3(k−1)
. (3.3)

Then, taking Γm as the characteristic value of Γ , the most unstable mode follows
directly from (3.2) as

nm = 1
3
{(7 + 3Γm)1/2 − 2}, (3.4)
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and, provided nm � 1,

nm ≈ { 1
3
Γm}1/2 =

(R∗o)1/2C
(3k−1)/2(k−1)
Q

31/2(σ + 2/R∗o)1/3(k−1)
. (3.5)

Note that nm ≈ ( 1
3
Γm)1/2 is functionally similar to the most unstable surface distortion

wavelength prediction included in the analysis of Shepherd & Sturtevant (1982).
Given the most unstable Rayleigh–Taylor mode, the next problem is to estimate

the number of fission fragments which that mode might produce. Assuming that the
fission fragment size is directly related to the wavelength of the distortion on the
surface of the whole bubble, a crude estimate would be that the fragment radius,
RF , would be given roughly by RF = R/nm. Then, if the original volume is equally
divided amongst these fragments, it follows that the number of fission fragments
is n3

m.
Discussion of this result is delayed until an alternative approach is examined.

4. Jet breakup
The results at the end of the last section assumed a particular model of bubble

fission. In other circumstances, it is observed that a bubble collapsing close to a wall
or free-surface forms a re-entrant jet which shatters the bubble into many fragments
when the jet impacts the other side of the bubble surface. In this section an estimate is
made of the number of fission fragments that would result from this mode of bubble
disintegration. To do so crudely, the size of the bubbles that survive such a violent
process is estimated to be that size for which the surface tension forces holding the
fission fragment together are roughly equal to the shear forces tearing it apart. The
shear rates involved could be estimated as γ = Ṙ/R at the beginning of the rebound
and, from (2.9) and (2.10), Ṙ can be estimated as Ṙ∗ where

Ṙ2
∗ =
{RoCP/tR}2{CQ/k1/3}3k/(k−1)

{σ + 2/R∗o}1/(k−1)
. (4.1)

To estimate the fission fragment size, RF , the typical surface tension force, 2πRFS , is
then equated to the typical shearing force, 6πµγR2

F so that RF = S/3µγ. It follows
that the number of fission fragments would be n3

j where

nj =
R∗
RF

=
3µṘ∗
S

. (4.2)

This is clearly a function of the previously used parameters σ, α, k, R∗o and CP , as
well as a Reynolds-number-like viscous parameter, Cµ:

Cµ =
Ro{ρ(pi∞ − pm∞)}1/2

µ
. (4.3)

Then, (4.2) can be written as

nj =
61/2R∗o

{
CQ/k

1/3
}3k/2(k−1)

Cµ(σ + 2/R∗o)1/2(k−1)
. (4.4)

The shearing force, 6πµγR2
F , used in deriving this result is a low-Reynolds-number

formulation and requires that ρṘ∗R∗/µ � 1. If, on the other hand, ρṘ∗R∗/µ � 1,
an appropriate estimate of the shearing force would be πργ2R4

F . Then it would
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follow that

nj =
R∗
RF

=

{
ρṘ2∗R∗

2S

}1/3

, (4.5)

and, in terms of the defined parameters,

nj =
(R∗o)1/3{CQ/k1/3}(3k−1)/3(k−1)

31/3(σ + 2/R∗o)2/9(k−1)
. (4.6)

Clearly, fragmentation as a result of the formation of a re-entrant jet is a very complex
process. Equation (4.6) is admittedly a crude and heuristic estimate of the resulting
fragment size. In the next section, the applicability and consequences of (4.4) and
(4.6) are considered.

5. Fission fragments
In assessing the results of the last two sections, namely (3.5), (4.4) and (4.6) for

the number of fission fragments, note that all three results have similar forms. This
is because they all involve fission forces which are inertial in origin and a resistance
to fission governed by surface tension. Moreover, since σ is often of order unity, the
magnitude of nm or nj is primarily determined by the numerator and is therefore
a function of R∗o and CQ (or, effectively, CP ), though Cµ also appears in (4.4).
Concentrating on those numerators involving R∗o and CQ, note that nm and nj sensibly
decrease with increasing S . The variation with nuclei size is more complex and requires
consideration of the factor (σ+2/R∗o) in the denominators. For very small nuclei sizes
such that R∗o � 2/σ the number of fission fragments increases with the nuclei size
(provided k takes some reasonable number). However, for larger nuclei such that
R∗o � 2/σ the number of fission fragments decreases as the nuclei size increases.
This slightly non-intuitive trend occurs because the maximum bubble size becomes
essentially independent of the nuclei size; however, the larger nuclei contribute more
non-condensable gas to the collapse and the collapse is therefore less violent, leading
to fewer fission fragments.

It is also appropriate at this point to comment on the low bubble Reynolds-number
result, (4.4). It is fairly easy to demonstrate that if the viscous terms dominate the
inertial terms and lead to (4.4) rather than (4.6) then the viscous terms in the Rayleigh–
Plesset equation itself should have been included in the analysis of § 2. Since they
were not so included, it follows that (4.4) is of dubious validity. Moreover, in many
of the cases of practical interest, the contribution of the viscous term to the overall
bubble dynamics described in § 2 is small. Consequently, in the interest of brevity, the
low bubble Reynolds-number result, (4.4), will not be pursued any further.

The results in (3.5) and (4.6) for nm and nj will now be illustrated with some
numerical examples. In figure 3, values for nm and nj from (3.5) and (4.6) are plotted
against the dimensionless nuclei size, R∗o , for various values of the parameter, CQ, and
the cavitation index, σ. Note again the similarity in the results for the two fission
models, the result, as mentioned above, of similar physical origins for the forces
causing and resisting fission.

For a typical surface tension, S , of 0.07 kg s−2 and a typical pressure difference,
(pi∞ − pm∞), of 105 kg m−1 s−1, nuclei of radii, Ro, ranging from 1 µm to 100 µm would
yield R∗o values ranging from 1.4 to 140, roughly in the middle of the horizontal
scale. Moreover, cavitation indices in the range used in the figures are commonly
experienced. Perhaps the greatest uncertainity lies in estimating typical values of CQ
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Figure 3. (a) Values of nm from the Rayleigh–Taylor instability analysis. (b) Values of nj from
the re-entrant jet breakup analysis. Both plotted against R∗o for k = 1.4 and various values of the
parameter, CQ, and the cavitation number, σ.

occurring in practice. The simplest way to estimate this is to use (2.16a–c). Common
values of Rmax/Ro range from 10 up to 100 and higher and this provides an estimate
of CP . Equation (2.15) suggests that CQ will typically be about an order of magnitude
smaller than CP and this leads to an estimate of CQ of order unity or greater. Figure 3
indicates that for CQ = 1 the smaller nuclei may lead to collapses without fission if the
cavitation number is large enough. However, large nuclei at lower cavitation numbers
will lead to breakup into large numbers of fission fragments.

(We note that the bubble wall velocities at the beginning of rebound in the above
examples are of the order of 3–10 m s−1. The Mach numbers are therefore much
smaller than those at which liquid compressibility would become important.)

6. Some comparisons with observations
While many of the photographs of cavitation bubbles before and after the first

collapse (for example, Lauterborn & Bolle 1975; Tomita & Shima 1990) show that
the bubble has fissioned into many fragments, the photographs rarely have the kind
of resolution that would allow a count of the number of those fragments. On the
other hand, though they are not normal cavitation bubbles, the photographs of Frost
& Sturtevant (1986) showing the breakup of ether vapour bubbles in glycerol are of
sufficient resolution to allow comparison with the present analysis.

Frost & Sturtevant (1986) (see also, Shepherd & Sturtevant 1982; Shepherd 1980;
Frost 1985) allowed drops of ether in gycerol to evapourate explosively and then
examined the surface appearance as the bubble oscillated. In addition, they measured
the pressures radiated as a result of these oscillations. Sample photographs just after
the first collapse are shown in figure 4. Using these photographs, the individual bubbles
observable on the half-surface facing the camera were counted. Doubling that number
to account for the back surface yielded values of 320, 400 and 410, respectively, for
the three cases. In the framework of § 3, this number should correspond to n2

m and
hence the photographs indicate nm ≈ 20.

To compare with the theory of § 3, note that the pressure radiated from an oscillating
bubble has an amplitude, p̃, given roughly by

p̃ =
ρ

4πR
d2V

dt2
≈ ρR2

R
d2R

dt2
, (6.1)
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Figure 4. Photographs of ether vapour bubbles in glycerol after the first bubble collapse
(reproduced with permission from Frost 1985).

where V and R are the volume and radius of the bubble and R is the distance
from the bubble centre to the point of pressure measurement (see Brennen 1995).
Substituting for R2d2R/dt2 in (3.2) and using the approximation in (3.5) yields

nm =

{
Γm

3

}1/2

≈
{R|p̃|

3S

}1/2

, (6.2)

where |p̃| is the amplitude of the radiated pressure. From the pressure traces given by
Frost (1985), the values of |p̃| for the three photographs in figure 4 were estimated
to be 6 × 104 kg m−1 s−2. With this, R = 6 mm and S = 0.07 N m−1 (6.2) then yields
nm = 41.

Though the evidence is limited, the qualitative agreement between the theoretical
value of nm = 41 and the experimental values around nm = 20 is encouraging. Note
that Shepherd (1980) found a similar relation between the predicted and observed
distortion wavelengths in his analysis of the same experiments. Clearly, however,
further comparisons are necessary to validate the theory.

7. Effective damping
Calculations of the global dynamics, R(t), which use the Rayleigh–Plesset equation

and therefore assume spherical symmetry, require an estimate of the energy dissipation
in order to yield realistic results. The dissipation can have a number of physical origins
including viscous dissipation in the liquid, thermal effects at the bubble surface and
acoustic radiation. In one of the first efforts to summarize these various sources
of dissipation, Chapman & Plesset (1971) proposed using an effective viscosity, µe,
which was the sum of contributions from these various sources in the viscous term of
the Rayleigh–Plesset equation. Of course, the consequences of the complex processes
associated with thermal and mass diffusion within the liquid and within the gas, do
not necessarily conform to the polytropic form assumed by Chapman & Plesset and
so a substantial literature subsequently emerged which treated these processes within
the context of a spherical bubble geometry (see, for example, Nigmatulin, Khabeev
& Nagiev 1981; Prosperetti 1991; Matsumoto & Takemura 1994).

However, when any of these techniques are applied to cavitating bubble dynamics
such as are the subject of this paper, estimates of the damping or effective vis-
cosity always produce far larger and more numerous rebounds than are observed
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experimentally. It is often remarked that this is because the bubble almost never
remains spherical through the first collapse. Experimental observations such as those
of Lauterborn & Bolle (1975) and Tomita & Shima (1990) show that though the
bubble may remain relatively intact prior to the first collapse, what emerges from
that collapse is either a highly distorted bubble mass or a cloud of bubble fragments.
The photographs of Frost & Sturtevant (1986) provide particularly good examples of
this. Moreover, they observed further fragmentation during subsequent collapses. It
seems likely that this fragmentation process dissipates substantial energy and there-
fore may contribute in a major way to the effective damping of the collapse and
rebound cycle. Perhaps this is why the observed number of these cycles rarely exceeds
three or four.

In this paper, an attempt has been made to evaluate the mode of breakup of a
bubble during the collapse process. As a part of this, it is useful to attempt to identify
the energy exchange associated with this fission process. One objective would be to
determine whether or not the observed attenuation of the collapse and rebound cycle
could be accounted for. The first step is to recall that the viscous term being used
in the usual Rayleigh–Plesset equation, (2.1), (where µe is now an effective viscosity
that incorporates several mechanisms of dissipation) implies a rate of dissipation of
energy given by

16πµeR(Ṙ)2. (7.1)

If, using the results of § 2, this is integrated over the collapse interval, −t∗ < t < t∗,
an expression for the total energy dissipated during that interval emerges:

64πµe
9

{
RminK(k − 1)

(k + 1)3

}1/2

. (7.2)

Turning this around, if the energy, ED , dissipated in a collapse as a result of fission
were estimated, then the appropriate value of µe that should be used to represent the
fission dissipation is

µe =
9ED
64π

{
(k + 1)3

RminK(k − 1)

}1/2

. (7.3)

The next step is to consider the fission process and to estimate the absorption of
energy that occurs during that process. As a part of that process, in the next section,
ED will be connected to the number of fission fragments, n3

m or n3
j .

8. Dissipation mechanisms during fission
There are several mechanisms by which the energy associated with the radial

motion may be deflected or dissipated. First, the formation of jets or surface waves
will channel kinetic energy in directions in which the energy must end up being
dissipated by viscosity as a result of the fluid mixing and turbulence. Secondly,
the bubble fragments that emerge from the fission process must necessarily contain
more surface free energy than the single bubble prior to collapse. This deflection of
energy will clearly also decrease the kinetic energy associated with the volumetric or
radial motion and therefore contribute to the damping. Estimates of both of these
contributions to the fission damping will now be attempted.

First, the discussion is framed by observing that the kinetic energy, E, of a single
spherical bubble in an infinite fluid is

E = 2πρṘ2R3. (8.1)
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Specifically, the kinetic energy, E∗, at the start of the rebound is

E∗ = 2πρR3
∗Ṙ

2
∗ = 2πρ

(k − 1)

k
K. (8.2)

To estimate the kinetic energy which might be dissipated owing to mixing, I suppose
that a single microjet penetrates the single bubble just after the beginning of the
rebound when R = R∗ and achieves a velocity that is some multiple, CJ , of Ṙ∗ (the
work of Blake & Gibson 1987 and others suggests that CJ may be as high as 10 –
see Brennen 1995). Then, if it is assumed that all the kinetic energy, EJ , in the jet is
dissipated during collapse and that the jet radius is 1/CJ of the bubble radius at the
beginning of rebound, it would follow that

EJ ∝ πρR3
∗Ṙ

2
∗. (8.3)

This simply states that the loss is a fraction of the total kinetic energy at the start of
the rebound. Consequently, the radial kinetic energy that remains is also a fraction,
say ν, of that total kinetic energy. This, in turn, implies (using the relation to K
in (8.3) and (2.4)) that the maximum volumetric radius achieved after the rebound
will be ν1/3 of that achieved before the collapse. If ν is some moderate fraction,
this implies that only a very small number of collapse and rebound cycles will be
observed. Experimental observations such as those of Ellis (1952), Lauterborn &
Bolle (1975), Vogel, Lauterborn & Timm (1989) and Tomita & Shima (1990) clearly
show that the number of rebounds usually lies between one and three. The plots
of Shima & Tomita (1981), for example, suggest that ν1/3 lies between 0.5 and 0.3,
which yields values of ν between 0.03 and 0.1. Clearly, to quantify this process
more accurately requires considerably more information than can be developed here.
However, it is encouraging to recognize that the analysis is qualitatively consistent
with the experimental observations.

Before leaving the subject, the other drain for kinetic energy, namely the additional
surface free energy, ES , in the fission fragment cloud, should be briefly examined.
Provided the number of fragments is much larger than unity:

ES ≈ 4πSR2
Fn

3
m = 4πSR2

∗nm ≈ 4πSR2
minnm, (8.4)

where nj is an alternative to nm. It follows from (8.4) and (7.3), using earlier expressions
for Rmin and K , that

µe = 9
16

(k + 1)3/2(σ + 2/R∗o)
1/2(k−1)C

−3k/2(k−1)
Q {2(pi∞ − pm∞)/3ρ}−1/2Snm. (8.5)

Then taking, as an example, (3.5) for nm, and omitting some constants of order unity,
the resulting effective viscosity becomes

µe = (σ + 2/R∗o)
1/6(k−1)C

−1/2(k−1)
Q {ρRoS}1/2. (8.6)

Examine now the order of magnitude of the effective viscosity predicted by (8.6). Since
the order of magnitude of the other terms is of order unity, the primary contribution is
the value of {ρRoS}1/2. For nuclei of size Ro = 10 µm and 100 µm, respectively, in water,
this primary contribution takes values equal to 0.025 kg m−1 s−1 and 0.08 kg m−1 s−1,
respectively. In comparison, the dynamic viscosity of water is about 0.001 kg m−1 s−1.
Thus, the fission surface free-energy contribution to the effective viscosity is close to
two orders of magnitude larger than that of the liquid viscosity in the spherically
symmetric model. A very similar result is obtained if one chooses to use nj rather than
nm in (8.5). However, more importantly, this fission surface free-energy contribution
still appears to be small compared with the mixing contribution discussed first.
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In summary, I find that both the absorption of energy into surface free energy as
a result of fission and the dissipation of energy owing to the mixing produced by
the non-spherically symmetric motions are much larger than the traditional liquid
viscosity contribution to the damping. However, for typical applications to cavitation
resulting from micrometre-sized nuclei in water, the mixing contribution dominates
the surface free-energy contribution. Only a qualitative examination of this dominant
contribution has been attempted in this paper and it suggests a specific ratio of the
maximum bubble size after collapse to that before. At present, it therefore seems
practical to examine the experimental observations for an appropriate value of this
ratio and to use this in the Rayleigh–Plesset module in larger codes.

9. Conclusions
Spurred by the need for multiphase flow models of cavitating flows which in-

corporate accurate Rayleigh–Plesset models for the bubble dynamics, this paper has
examined one of the deficiencies in the Rayleigh–Plesset calculations which occur dur-
ing cavitating bubble collapse. Numerous experimental observations have revealed
that though a single coherent bubble may enter the very rapid collapse phase, almost
invariably what emerges is either a highly distorted bubble or a cloud of smaller
bubbles. This paper seeks to elucidate this fission process and begins by qualitatively
evaluating the number of fission fragments that would result from (i) a fission process
resulting from a Rayleigh–Taylor instability of the interface and (ii) a fission process
resulting from a re-entrant jet collapse mechanism. Both mechanisms lead to quali-
tatively similar fission fragment numbers that depend on several global parameters
which are identified.

In seeking some experimental verification of these fission fragment numbers I turn,
not to pictures of cavitation bubbles (which do not, as yet, have the resolution that
would allow the counting of bubbles), but to the photographs by Shepherd, Frost
and Sturtevant of the fission of collapsing ether vapour bubbles in glycerol. The
theory and observation of the number of fission fragments are qualitatively similar.
However, the observed number of fragments is significantly smaller perhaps because
viscous effects on the instability were not incorporated in the theory.

The paper ends by evaluating how the fission process will contribute to the damping
of the global volumetric motions that the Rayleigh–Plesset equation is often used
to simulate. It is shown that the kinetic energy that is dissipated by the mixing and
turbulence associated with fission is much greater than the energy which is deflected
into the additional free-surface energy. However, both are much greater than the
energy dissipated by the classical viscous, thermal and acoustic mechanisms normally
used to evaluate the bubble damping. Thus, the paper concludes that for a Rayleigh–
Plesset method to model the global volumetric motions of the bubble or bubble cloud
adequately, it is neccessary to introduce an energy dissipation mechanism associated
with the fission process. The analysis shows that, at present, the best way to do this is
to set the kinetic energy emerging from the collapse to some fraction of that entering
collapse. However, comparisons with experimental observations are neccessary to
establish the best value for that fraction.

This paper is dedicated to the memory of my colleague Brad Sturtevant whose
enthusiasm and dedication inspired all who knew him. I would also like to thank Joe
Shepherd, David Frost, Tim Colonius and Steve Hostler for their contributions to
this paper.
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